Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products

نویسندگان

  • Pavel Etingof
  • Wee Liang Gan
  • Victor Ginzburg
  • Alexei Oblomkov
چکیده

The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras associated with wreath-products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection Functors and Symplectic Reflection Algebras for Wreath Products

We construct reflection functors on categories of modules over deformed wreath products of the preprojective algebra of a quiver. These functors give equivalences of categories associated to generic parameters which are in the same orbit under the Weyl group action. We give applications to the representation theory of symplectic reflection algebras of wreath product groups.

متن کامل

Quantum algebras and symplectic reflection algebras for wreath products

To a finite subgroup Γ of SL2(C), we associate a new family of quantum algebras which are related to symplectic reflection algebras for wreath products Sl o Γ via a functor of Schur-Weyl type. We explain that they are deformations of matrix algebras over rank-one symplectic reflection algebras for Γ and construct for them a PBW basis. When Γ is a cyclic group, we are able to give more informati...

متن کامل

2 4 Ju l 2 00 1 Symplectic reflection algebras , Calogero - Moser space , and deformed

To any finite group Γ ⊂ Sp(V ) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, Hκ, of the algebra C[V ]#Γ, smash product of Γ with the polynomial algebra on V . The parameter κ runs over points of P, where r =number of conjugacy classes of symplectic reflections in Γ. The algebra Hκ, called a symplectic reflection algebra, is related to the coordi...

متن کامل

Gelfand-kirillov Conjecture for Symplectic Reflection Algebras

We construct functorially a class of algebras using the formalism of double derivations. These algebras extend to higher dimensions Crawley-Boevey and Holland’s construction of deformed preprojective algebras and encompass symplectic reflection algebras associated to wreath products. We use this construction to show that the quotient field of a symplectic reflection algebra is “rational”, confi...

متن کامل

Representations of Symplectic Reflection Algebras and Resolutions of Deformations of Symplectic Quotient Singularities

We give an equivalence of triangulated categories between the derived category of finitely generated representations of symplectic reflection algebras associated with wreath products (with parameter t = 0) and the derived category of coherent sheaves on a crepant resolution of the spectrum of the centre of these algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005