Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
نویسندگان
چکیده
The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras associated with wreath-products.
منابع مشابه
Reflection Functors and Symplectic Reflection Algebras for Wreath Products
We construct reflection functors on categories of modules over deformed wreath products of the preprojective algebra of a quiver. These functors give equivalences of categories associated to generic parameters which are in the same orbit under the Weyl group action. We give applications to the representation theory of symplectic reflection algebras of wreath product groups.
متن کاملQuantum algebras and symplectic reflection algebras for wreath products
To a finite subgroup Γ of SL2(C), we associate a new family of quantum algebras which are related to symplectic reflection algebras for wreath products Sl o Γ via a functor of Schur-Weyl type. We explain that they are deformations of matrix algebras over rank-one symplectic reflection algebras for Γ and construct for them a PBW basis. When Γ is a cyclic group, we are able to give more informati...
متن کامل2 4 Ju l 2 00 1 Symplectic reflection algebras , Calogero - Moser space , and deformed
To any finite group Γ ⊂ Sp(V ) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, Hκ, of the algebra C[V ]#Γ, smash product of Γ with the polynomial algebra on V . The parameter κ runs over points of P, where r =number of conjugacy classes of symplectic reflections in Γ. The algebra Hκ, called a symplectic reflection algebra, is related to the coordi...
متن کاملGelfand-kirillov Conjecture for Symplectic Reflection Algebras
We construct functorially a class of algebras using the formalism of double derivations. These algebras extend to higher dimensions Crawley-Boevey and Holland’s construction of deformed preprojective algebras and encompass symplectic reflection algebras associated to wreath products. We use this construction to show that the quotient field of a symplectic reflection algebra is “rational”, confi...
متن کاملRepresentations of Symplectic Reflection Algebras and Resolutions of Deformations of Symplectic Quotient Singularities
We give an equivalence of triangulated categories between the derived category of finitely generated representations of symplectic reflection algebras associated with wreath products (with parameter t = 0) and the derived category of coherent sheaves on a crepant resolution of the spectrum of the centre of these algebras.
متن کامل